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Free vibration and corresponding optimal design problems are solved for laminated
composite shallow shells of rectangular planform. The shells have symmetric laminated
construction and are supported by shear diaphragms along the edges. The first-order
transverse shear deformation is assumed in the Donnell type shell theory to account for
the thickness shear effect, and an analytical solution is presented which is exact for cross-ply
laminates and is approximate for angle-ply laminates. A simplified formula is also derived
by neglecting inplane inertia terms. Analytical solutions with/without the inplane inertia
terms from the classical thin shell theory are also shown. In numerical examples, natural
frequencies are presented for various types of shell curvature, e.g., circular cylindrical,
spherical and hyperbolic paraboloidal shells. Fibre orientation angles, which cause the
maximized fundamental frequencies of the alternating angle-ply shells, are determined, and
effects of using the four different vibration solutions are discussed on the optimal
frequencies and fibre orientation angles. Questions of how the different solutions
quantitatively affect the optimal design results and which solution is recommended in the
present type of optimization problems are clarified in the conclusions.
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1. INTRODUCTION

Fibrous composite materials are increasingly being used in many weight-sensitive
structural applications, which are typically exposed to severe vibration environments.
Laminated plate and shell components are quite often encountered among these
applications. Accompanying this technical trend has been a growth in the recent literature
on vibrations of laminated plates and shells. Even when one limits the search to recent
literature in the 1990s, there can be found a considerable number of papers dealing with
analyses of laminated flat plates [1–12], and a detailed literature survey was given in
references [5, 6] with emphasis on the thick plate analysis.

As for vibration of laminated shallow shells, some recent references can be found
[13–21]. Notable work among them is a reference [13] in which a complete and consistent
theory is studied to derive equations thoroughly for elastic deformation problems. It seems,
however, that accurate comprehensive numerical results are still needed on natural
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frequencies of laminated shallow shells, e.g., the shell with edges constrained by shear
diaphragms.

On the other hand, optimal design of laminated plate and shell components is desirable
to realize the full potential of fibre reinforced materials. The overall structural performance
can be improved by choosing the fibre oreintation angles as design variables, and
determining the angles to maximize an object function, typically the fundamental
frequency in the vibration problems. A few publications are found for plate optimization,
e.g., by Fukunaga et al. [22] and Grenestedt [23].

Much less has been done to study optimization of shell components. Raouf [24]
discussed the effects of varying fibre orientation angles on linear and non-linear frequencies
of composite panels. Mota Soares et al. [25] presented a two-level design approach to deal
with composite plate/shell structures by sequentially using the DFP (Davidon–Fletcher–
Powell) method. The present first author formulated an analytically oriented design
method [26] and employed a genetic algorithm [27] to solve the problem of thin shallow
shells supported by shear diaphragms. But these previous studies are limited to the use of
the classical theory where thickness shear effects are ignored, and scanty literature is
available in which the shear deformation theory is used in the structural analysis part of
the optimization.

In the shallow shell theory where the Donnell-type assumption is used [13], an exact
solution is obtainable for a single layer, specially orthotropic shell and a cross-ply
laminated shell, both supported by shear diaphragms. This solution can also be extended
to a sufficiently accurate, approximate solution for a balanced angle-ply shell when the
number of layers is large enough to allow for neglecting cross-elasticity stiffness (usually
denoted by D16, D26 ) in bending.

The first objective of this paper is to tabulate the natural frequencies of laminated
shallow shells obtained by applying the first-order shear deformation shell theory (FSDST)
and the classical shell theory (CST), and also by using reduced solutions with some inertia
terms neglected. The influence of using various solutions are discussed for a wide range
of curvature and thickness ratio.

The second objective, which is more emphasized in the present paper, is to determine
the optimal fibre orientation angles which maximize the fundamental frequencies of the
shells by using the four different solutions. Discrepancies among the optimal fibre
orientation angles, caused by using the different solutions, are clarified for angle-ply
laminated shells having various curvatures and thickness ratios, and some recommen-
dations are made in the choice of vibration solutions when one deals with optimization
of shallow shell structures.

2. SOLUTIONS FROM SHEAR DEFORMATION AND CLASSICAL THEORIES

Figure 1 shows a shallow shell bounded by a rectangular planform a× b. The shell has
a quadratic middle surface with relatively small, principal constant curvatures 1/Rx and
1/Ry (Rx and Ry: curvature radii) but no twisting curvature (1/Rxy=0), and has a
constant thickness h. A symmetric laminate is considered and therefore the coupling
stiffnesses Bij vanish (Bij =0). For cross-ply laminates (i.e., laminates stacked only with 0°
and/or 90° piles), the cross-elasticity terms are zero (A16 =A26 =D16 =D26 =0), and these
terms are assumed in the present study to vanish for angle-ply shells by considering a
relatively large number of balanced angle-ply laminates. The u*, v* and w* denote
displacements of an arbitrary point in the x, y and z directions, respectively, and u, v and
w are those of a point on the middle surface. r is the mean mass per unit area of the shell.
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2.1.    -   

The Kirchhoff assumption, normally used for the analysis of thin shells, ignores the
transverse shear deformation. In contrast, the first-order shear deformation shell theory
(FSDST) assumes that normals to the middle surface still remain straight but no longer
normal to the surface during deformation. This assumption during deformation is
expressed in the shallow shell theory as

u*(x, y, z, t)= u(x, y, t)+ zFx (x, y, t),

v*(x, y, z, t)= v(x, y, t)+ zFy (x, y, t),

w*(x, y, z, t)=w(x, y, t), (1)

by neglecting terms with z/Rx and z/Ry, where fx and fy are the rotations of the normals
to the middle surface due to bending. Substitution of equations (1) into the linear
strain–displacement relations [13] yields

o*x (x, y, z, t)=
1u*
1x

+
w
Rx

=
1u
1x

+ z
1Fx

1x
+

w
Rx

,

o*y (x, y, z, t)=
1v*
1y

+
w
Ry

=
1v
1y

+ z
1Fy

1y
+

w
Ry

,

g*xy (x, y, z, t)=
1u*
1y

+
1v*
1x

=
1u
1y

+
1v
1x

+ z01Fx

1y
+

1Fy

1x 1,
g*yz =

1v*
1z

+
1w*
1y

=Fy +
1w
1y

, g*zx =
1u*
1z

+
1w*
1x

=Fx +
1w
1x

The stress–strain relations in the kth layer are given by

8s*1
s*2
t*129

(k)

= &Q11

Q12

0

Q12

Q22

0

0
0

Q66'
(k)

8o*1o*2g*129, 6t*23

t*317
(k)

=$Q44

0
0

Q55%
(k)

6g*23

g*317, (3)

Figure 1. Laminated shallow shell and co-ordinate system.
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where the 1 and 2 axes denote major and minor material principal axes, respectively, in
the plane and the 3 axes coincide with the z-axis. The material constants Qij are

Q11 =
E1

1− n12n21
, Q22 =

E2

1− n12n21
, Q12 =

n12E2

1− n12n21
,

Q66 =G12 , Q44 =G23, Q55 =G12 (superscript k is omitted), (4)

where E1 and E2 are moduli of elasticity and G12 and G23 are shear moduli. The n12 is a
Poisson’s ratio, which satisfies a reciprocal relation of E2n12 =E1n21. Equations (3) are
converted into the stress–strain relations with respect to the x and y axes [28] as

8s*x
s*y
t*xy9

(k)

= &Q� 11

Q� 12

Q� 16

Q� 12

Q� 22

Q� 26

Q� 16

Q� 26

Q� 66'
(k)

8o*xo*yg*xy9, 6t*yz

t*zx7
(k)

=$Q� 44

Q� 45

Q� 45

Q� 55%
(k)

6g*yz

g*zx7. (5)

When effects of the terms z/Rx and z/Ry are neglected in the usual practice of shallow
shell approximation, the stress resultants and moments are obtained by integrating stresses
over the thickness

8Nx

Ny

Nxy9=g h/2

−h/2 8s*x
s*y
t*xy9 dz, 8Mx

My

Mxy9=g h/2

−h/2 8s*x
s*y
t*xy9z dz, 6Qy

Qx7= k g
h/2

−h/2 6t*yz

t*zx7 dz, (6)

where k is a shear correction factor which accounts for the fact that shear stresses are not
uniform in the thickness direction [28]. The value of k is usually taken to be 5/6 or p2/12
for isotropic cases, but in composites it depends on constituent layer properties, fibre
orientation angles and so on. For the purpose of numerical study, k=5/6 is used
throughout in the present study. Equations (6) are substituted into the equilibrium
equations

1Nx

1x
+

1Nxy

1y
= r

12u
1t2 ,

1Nxy

1x
+

1Ny

1y
= r

12v
1t2

1Qx

1x
+

1Qy

1y
−

Nx

Rx
−

Ny

Ry
= r

12w
1t2 ,

1Mx

1x
+

1Mxy

1y
−Qx =

rh3

12
12Fx

1t2 ,

1Mxy

1x
+

1My

1y
−Qy =

rh3

12
12Fy

1t2 . (7)

Then the following governing equations are derived.

L11 L12 L13 0 0 u −r 0 0 0 0 u

L12 L22 L23 0 0 v 0 −r 0 0 0 v

L13 L23 L33 L34 L35 w + 0 0 r 0 0
12
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where I= rh2/12 is a rotational inertia per unit area of the shell, and the elements Lij in
equation (8) are differential operators given by

L11 =A11
12

1x2 +A66
12

1y2 , L12 = (A12 +A66)
12

1x 1y
,

L13 =0A11

Rx
+

A12

Ry1 1

1x
, L22 =A66

12

1x2 +A22
12

1y2 ,

L23 =0A12

Rx
+

A22

Ry1 1

1y
,

L33 =−k0A55
12

1x2 +A44
12

1y21+0A11

R2
x
+2

A12

RxRy
+

A22

R2
y1,

L34 =−kA55
1

1x
, L35 =−kA44

1

1y
, L45 = (D11 +D66)

12

1x 1y
,

L44 =D11
12

1x2 +D66
12

1y2 − kA55,

L55 =D22
12

1y2 +D66
12

1x2 − kA44. (9)

In equations (9), the (inplane) stretching stiffness Aij and (out-of-plane) bending stiffness
Dij are defined by

Aij = s
K

k=1

Q� (k)
ij (zk − zk−1),

Dij = 1
3 s

K

k=1

Q� (k)
ij (z3

k − z3
k−1), (10)

where zk is the distance from the middle surface to the upper surface of the kth layer. As
previously mentioned, coupling terms Bij are deleted due to symmetric laminates, and
cross-elasticity terms such as A16, A26, D16 and D26 are also assumed to vanish.

The displacements of the middle surface may be expressed by functions

u(x, y, t)=Umnh cos
mpx

a
sin

npy
b

ejvt,

v(x, y, t)=Vmnh sin
mpx

a
cos

npy
b

ejvt,

w(x, y, t)=Wmnh sin
mpx

a
sin

npy
b

ejvt,

fx (x, y, t)=fxmn cos
mpx

a
sin

npy
b

ejvt,

fy (x, y, t)=fymn sin
mpx

a
cos

npy
b

ejvt, (11)
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where m and n indicate half wavenumbers of the mode shape along the x and y axes,
respectively, and Umn , Vmn , Wmn , fxmn and fymn are unknown constants representing
non-dimensional amplitudes. The thickness h is multiplied in the first three functions of
equation (11) to make the constants non-dimensional. The functions satisfy the boundary
conditions

v=w=Mx =Nx =0 along x=0, a,

u=w=My =Ny =0 along y=0, b (12)

when the four edges are supported by shear diaphragms.
Substitution of assumed solutions (11) into (8) yields an eigenvalue equation

[K]{u}=V2[M]{u}, (13)

where {u}= {Umn , Vmn , Wmn , fxmn , fymn}T and the elements in symmetric matrices [K] and
[M] are given by

K11 =A� 11m̄2 +A� 66n̄2, K12 = (A� 12 +A� 66)m̄n̄,

K13 =−(A� 11 +A� 12g)bm̄, K22 =A� 66m̄2 +A� 22n̄2,

K23 =−(A� 12 +A� 22g)bn̄,

K33 = k(A� 55m̄2 +A� 44n̄2)+ b2(A� 11 +2A� 12g+A� 22g
2),

K34 = kA� 55m̄, K35 = kA� 44n̄, K45 = (D� 12 +D� 66)m̄n̄,

K44 =D� 11m̄2 +D� 66n̄2 + kA� 55,

K55 =D� 22n̄2 +D� 66m̄2 + kA� 44, (14)

and

M11 =M22 =M33 =1, M44 =M55 = o2/12, Mij =0 (i$ j). (15)

Non-dimensional quantities in equations (14) and (15) are introduced by

a=
a
b

(aspect ratio), b=
a
Rx

(degree of curvature),

g=
Rx

Ry
(curvature ratio), o=

h
a

(thickness ratio),

m̄=mp, n̄= anp,

A� ij =
Aija2

D0
, D� ij =

Dij

D0
(non-dimensional stiffness),

V2 =
rv2a4

D0
(non-dimensional frequency parameter),

D0 =
E2h3

12(1− n12n21)
(reference stiffness). (16)

An eigenvalue problem expressed in the 5×5 matrix equation can be easily solved by using
standard eigenvalue routines.
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When the inplane and rotational inertias are neglected in equation (13), the frequency
parameter V2 can be explicitly solved as

V2 =K33 +
2K12K13K23 − (K22K 2

13 +K11K 2
23)

K11K22 −K 2
12

+
2K34K35K45 − (K55K 2

34 +K44K 2
35)

K44K55 −K2
45

, (17)

where Kij are defined as in equations (14). This explicit expression may be useful to apply
in the iteration process of optimization, if it is accurate enough.

2.2.     

In the thin shell theory, the famous Kirchhoff assumption is applied, i.e., normals to
the middle surface of the undeformed shell remain straight and normal to the surface
during deformation. Under this assumption, a complete set of general equations for
shallow shells was derived [13] and the following governing equations may be reduced

&L11 L12 L13

L12 L22 L23

L13 L23 L33'8uvw9+ 12

1t2 &−r

0
0

0
−r

0

0
0
r'8uvw9=0, (18)

where the elements Lij (i, j=1, 2, 3) are the differential operators given by equations (9),
except for

L33 =D11
14

1x4 +2(D12 +2D66)
14

1x2 1y2 +D22
14

1y4 +0A11

R2
x
+2

A12

RxRy
+

A22

R2
y1. (19)

The displacements of the middle surface are expressed by the first three functions of
equations (11), and likewise they satisfy the boundary conditions (12) for shear
diaphragms. Substitution of the assumed solutions into governing equations (18) yields an
eigenvalue equation

[K]{u}=V2{u}, (20)

where {u}= {Umn , Vmn , Wmn}T and the elements Kij (i, j=1, 2, 3) in a symmetric matrix [K]
are given by equations (14), except for

K33 =D� 11m̄4 +2(D� 12 +2D� 66)m̄2n̄2 +D� 22n̄4 + b2(A� 11 +2A� 12g+A� 22g
2). (21)

Non-dimensional quantities in the elements are defined by those in equations (16). The
explicit solution, obtained by neglecting inplane inertia terms, is given by just droping the
last term of the three-term solution (17) as

V2 =K33 +
2K12K13K23 − (K22K 2

13 +K11K 2
23)

K11K22 −K2
12

. (22)

3. NUMERICAL EXAMPLE AND OPTIMIZATION

3.1.  

A numerical example demonstrated here is a laminated shallow shell constrained along
the entire edges by shear diaphragms, which is composed of orthotropic layers of equal
thickness and of the same composite material. A symmetric 12-layered stacking
construction is employed for both cross-ply and angle-ply shells, and an alternating
balanced sequence of [(u/−u)3]s (s: symmetric) is assumed for the angle-ply case, where
u is a representative fibre angle as illustrated in Figure 1. The shell has a rectangular



.   . 234

planform (a/b=10 2) including the square shape (a/b=1). The curvature ratio is taken
for open shallow shells with circular cylindrical curvature as Rx /Ry =0 (Rx q 0, Ry =a),
with spherical curvature as Rx /Ry =1 (Rx , Ry q 0), and with hyperbolic paraboloidal
curvature as Rx /Ry =−1 (Rx q 0, Ry Q 0).

The material considered is a carbon-fibre composite (CFRP) having a relatively large
degree of orthotropy (E1/E2 =15·4). The elastic constants within lamina [28] are:
E1 =138 GPa, E2 =8·96 GPa, G12 =7·1 GPa and n12 =0·3. For the shear deformation
theories, such as the first-order theory (FSDST), where the transverse shear modulus is
required, the material is assumed to be transversely isotropic as

G23 =E2/(1+ n23) with n3 =0·3.

For the laminated shallow shells thus defined, frequency parameters V=va2zr/D0 are
calculated and are used in the optimization process. There are four different types of
solutions, designated by: F-I solution: First-order shear deformation shell theory (FSDST)
with inplane and rotational inertias Included (equation (13)); F-N solution: First-order
shear deformation shell theory (FSDST) with inplane and rotational inertias Neglected
(equation (17)); C-I solution: Classical (thin) shell theory (CST) with inplane inertia
Included (equation (20)); C-N solution: Classical (thin) shell theory (CST) with inplane
inertia Neglected (equation (22)). The focus will be on the effects of using the four different
solutions on the calculated natural frequencies, as well as those on the maximized
fundamental frequencies in the optimal design.

3.2.   

An object function is taken to be a frequency parameter V for the fundamental mode
of the shallow shell. The maximum point of the object function is searched
one-dimensionally with respect to a design variable of the fibre orientation angle u, since
the problem is limited to a balanced, alternating angle-ply [(u/−u)3]s . Any specific
constraint conditions other than 0°T uT 90° are not imposed on the design variable.

The term ‘‘fundamental frequency’’ indicates the lowest eigenvalue for given conditions.
A vibration mode is identified by a pair of integers (m, n), where m and n are the half
wavenumbers in assumed solutions. It is noted in the present problem that the fundamental
mode is not limited to (m, n)= (1, 1) and may take on other wavenumbers, such as (1, 2)
or (2, 1). This tendency is not unusual in the vibration and buckling problems of shells
due to the effect of geometric curvatures, and is more vividly seen in closed cylindrical
shells.

The present problem is summarized mathematically in the form

Find u

to maximize (min Vmn ) (m, n=1, 2, . . .) (23)

subject to 0°T uT 90°,

where the second equation implies that a solution point is sought that maximizes the lowest
value of Vmn for all m and n.

As explained in reference [26], a globally maximum solution is not necessarily
determined by looking at the frequency curve with a single (m, n). There are two patterns
of how the global solution exists; Case (1): the maximum solution exists at a stationary
point of the frequency curve with a single (m, n), and Case (2): the maximum solution exists
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T 1

Frequency parameters of thin cross-ply shallow shells with square planform (a/b=1,
h/a=0·01, [(0/90)3]s )

(m, n)
ZXXXXXXXXXXXXCXXXXXXXXXXXXV

Rx
Ry

a
Rx Solution (1, 1) (1, 2) (2, 1) (2, 2) (1, 3) (3, 1)

F–I 71·64 152·1 135·3 185·8 269·8 287·8
0·2 F–N 71·78 152·3 135·4 186·0 270·0 288·0

C–I 71·66 152·2 135·4 185·9 270·0 288·1
C–N 71·79 152·3 135·4 186·0 270·1 288·2

g
G

G

G

G

F

f

g
G

G

F

f

g
G

G

F

f

0

F–I 146·4 280·6 147·4 225·9 408·8 289·5
0·5 F–N 148·0 282·6 147·9 226·6 410·5 290·0

C–I 146·4 280·7 147·5 226·0 409·0 289·8
C–N 148·0 282·6 147·9 226·6 410·5 290·2

F–I 121·0 170·8 185·5 209·9 277·5 324·0
0·2 F–N 121·3 171·1 185·8 210·1 277·8 324·3

C–I 121·0 170·9 185·6 210·0 277·7 324·3
C–N 121·3 171·1 185·8 210·2 277·9 324·5

g
G

G

G

G

F

f

g
G

G

F

f

g
G

G

F

f

1

F–I 280·8 340·3 347·8 331·8 439·7 470·2
0·5 F–N 285·9 343·2 350·8 333·4 441·8 472·4

C–I 280·8 340·4 347·9 331·9 440·0 470·5
C–N 285·9 343·2 350·8 333·4 441·9 472·5

F–I 44·09 135·6 153·7 177·0 262·5 311·2
0·2 F–N 44·30 135·9 154·1 177·2 262·9 311·6

C–I 44·31 135·7 153·8 177·0 262·7 311·5
C–N 44·31 135·9 154·1 177·2 263·0 311·8

g
G

G

G

G

F

f

g
G

G

F

f

g
G

G

F

f

−1

F–I 43·19 221·8 233·1 176·0 377·9 412·9
0·5 F–N 44·30 224·4 235·8 177·2 380·3 415·5

C–I 43·23 221·8 233·1 176·1 378·1 413·2
C–N 44·31 224·4 235·8 177·2 380·4 415·6

at the crossing point of two frequency curves with a pair of different (m, n)’s for example,
(1, 1) and (2, 1) or (1, 2) and (2, 1), with an inequality condition

1Vmn

1u
·
1Vm'n'

1u
T 0. (24)

In the present optimization process, one-dimensional sequential search with a
coarse increment in u is carried out first for the frequency parameters with
(m, n)T (2, 2), and optimal values with more accuracy are obtained by the golden section
method.
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4. NATURAL FREQUENCIES OF LAMINATED SHALLOW SHELLS

4.1.    - 

Table 1 presents frequency parameters V of symmetrically laminated, cross-ply shallow
shells with square planform (a/b=1). The lamination sequence is given by [(0/90)3]s having
relatively thin total thickness (h/a=0·01). For three types of the curvature ratios
(Rx /Ry =0, 1, −1) and two degrees of curvature (a/Rx =0·2, 0·5), frequency parameters
calculated by the four solutions are tabulated for (m, n) modes with m+ nT 4.

It is seen in the table that the C-I and C-N solutions yield greater frequencies than the
F-I and F-N solutions, respectively, because fewer degrees of freedom in the solutions give
rise to stiffening effects in the system. For the same reason, frequencies without inplane
inertia, C-N and F-N, give larger values than those with inertia, C-I and F-I, respectively.
Thus, among the four solutions presented, frequencies from the C-N solution are the
largest and those from the F-I solution are the smallest values, for each (m, n) mode in
the table. Such discrepancies between the two solutions are slightly magnified as the degree
of curvature a/Rx increases from 0·2 to 0·5. Among three types of the curvature ratios
Rx /Ry , the largest discrepancy of 2·5% is seen in the (1, 1) mode of the hyperbolic
paraboloidal shell (Rx /Ry =−1), but the others are about 1% or less.

The lamination [(0/90)3]s implies that the outer 0° layer of each (0/90) pair has stronger
stiffening effect in bending than the inner 90° layer, and this causes greater frequencies of
the (2, 1) mode than those of the (1, 2) modes in two types of the curvature ratios
(Rx /Ry =1, −1). But for the cylindrical shells (Rx /Ry =0), geometrical stiffening in the
y direction due to cylindrical curvature has a more dominant effect than the material
stiffening in the x direction, and the frequencies of the (1, 2) mode have larger values than
the (2, 1) mode with about 12% discrepancy for a/Rx =0·2 and even greater, 90% for
a/Rx =0·5.

Table 2 presents frequency parameters V in the same format as Table 1, except that shells
are relatively thick (h/a=0·1). The other geometric and material parameters are identical
to those in Table 1, and the effect of difference in thickness may be extracted. Generally
speaking, tendencies observed in using the four different solutions are the same as in Table
1. But discrepancies between the C-N and F-I solutions, which are the largest and smallest
for each (m, n), respectively, are magnified to a large extent, and for half of the values
presented the discrepancies are even greater than 5%. Also noted is that the frequency
parameters are in the order of the C-N, C-I, F-N and F-I solutions descending from the
largest C-N solution, except for only three cases of the (1, 1) mode of the three curvature
ratios (Rx /Ry =0, −1 and 1) with a/Rx =0·5 where the order of the C-I and F-N solutions
is interchanged.

4.2.    - 

Figures 2–5 show variations of frequency parameters V, calculated by the F-I solution,
with the fibre angle u for 12-layered, alternating angle-ply laminates [(u/−u)3]s . The solid
lines denote frequencies of relatively thick shells (h/a=0·1) and broken lines, those of thin
shells (h/a=0·01). The shells have an aspect ratio a/b=1 (square planform) and the
degree of curvature is taken to be a/Rx =0·5 in each figure, except for Figure 2 dealing
with flat plates.

Figure 2 shows frequency parameters of laminated flat plates (a/Rx =0), as a special
case of the shallow shell. The frequency variations are exactly symmetric at about u=45°,
and the discrepancies between two sets of frequencies are small, particularly for the lowest
(1, 1) mode. As seen, the fibre angle u does not have a significant effect on the lowest mode,
and the maximum is found at u=45° which is a stationary point of the curve.
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Figure 3 considers laminated shells having circular cylindrical curvature (Rx /Ry =0).
Although the frequencies are no longer symmetric about at u=45° due to the geometric
curvature in one direction (Rx q 0, Ry =a), the variations in frequencies for thick shells
(shown by solid lines, h/a=0·1) are very similar to those for flat plates. In contrast, the
variations of thin shells (shown by broken lines, h/a=0·01) appear totally different, giving
the maximum of the fundamental frequency at a crossing point of two curves (1, 1) and
(2, 1). This difference between two variations indicates that the membrane stiffness effect
by the cylindrical geometric curvature is dominant for thin shells (h/a=0·01), while
bending stiffnesses Dij are magnified by the cube of thickness h, and the larger thickness

T 2

Frequency parameters of thick cross-ply shallow shells with square planform (a/b=1,
h/a=0·1, [(0/90)3]s )

(m, n)
ZXXXXXXXXXXXXCXXXXXXXXXXXXV

Rx
Ry

a
Rx Solution (1, 1) (1, 2) (2, 1) (2, 2) (1, 3) (3, 1)

F–I 43·92 107·7 127·0 167·4 217·7 262·5
0·2 F–N 44·35 109·9 129·4 172·4 225·4 271·1

C–I 44·59 111·8 132·9 177·2 234·2 287·7
C–N 44·67 111·9 133·0 177·3 234·4 287·8

g
G

G

G

G

F

f

g
G

G

F

f

g
G

G

F

f

0

F–I 45·34 109·6 126·8 167·5 218·9 262·2
0·5 F–N 46·20 112·5 129·5 172·8 227·6 271·2

C–I 46·00 113·6 132·7 177·3 235·2 287·3
C–N 46·50 114·4 133·1 177·8 236·4 287·8

F–I 44·93 108·0 127·5 167·6 217·8 262·8
0·2 F–N 45·41 110·2 130·0 172·6 225·5 271·6

C–I 45·59 112·0 133·4 177·4 234·3 287·9
C–N 45·72 112·2 133·6 177·6 234·5 288·2

g
G

G

G

G

F

f

g
G

G

F

f

g
G

G

F

f

1

F–I 50·94 111·1 129·8 168·9 219·3 263·6
0·5 F–N 52·27 114·1 133·4 174·6 228·1 273·7

C–I 51·60 115·0 135·6 178·6 235·7 288·2
C–N 52·54 116·0 136·8 179·5 237·0 290·2

F–I 43·46 107·4 127·0 167·2 217·5 262·5
0·2 F–N 43·99 109·7 129·6 172·3 225·4 271·4

C–I 44·12 111·5 132·9 177·0 234·0 287·6
C–N 44·30 111·7 133·2 177·2 234·3 288·0

g
G

G

G

G

F

f

g
G

G

F

f

g
G

G

F

f

−1

F–I 42·57 107·8 126·9 166·3 217·8 262·0
0·5 F–N 43·99 111·1 130·8 172·3 227·0 272·8

C–I 43·20 111·7 132·6 176·0 234·1 286·5
C–N 44·31 113·1 134·4 177·2 235·9 289·3
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Figure 2. Variations of frequency parameters V of 12-layered flat plates versus the fibre angle u (a/Rx =0,
a/b=1, [(u/−u)3]s ; ——: h/a=0·1, – – –: h/a=0·01).

Figure 3. Variations of frequency parameters V of 12-layered shallow shells with cylindrical curvature versus
the fibre angle u (Rx /Ry =0, a/Rx =0·5, a/b=1, [(u/−u)3]s ; ——: h/a=0·1, – – –: h/a=0·01).

(h/a=0·1) suppresses the membrane effect, eventually resulting in similar frequency
variations to the flat plate.

Figure 4 and 5 present the frequencies V of spherical and hyperbolic paraboloidal shells,
respectively. Both variations are symmetric with respect to u=45° and their patterns of
the thick case are again similar to the flat plate for the same reason given for the cylindrical
shell. For the thin spherical shells in Figure 4, the maximum fundamental frequency is
given at u=45°, a crossing point of the (1, 2) and (2, 1) curves. In Figure 5, especially
noted is that both fundamental frequencies almost coincide for hyperbolic paraboloidal
shells with different thicknesses (h/a=0·01 and 0·1), this is a very unique feature of such
a shell, which has positive and negative geometric curvature inside the boundary.

5. OPTIMAL FREQUENCIES OF ANGLE-PLY SHALLOW SHELLS

In Tables 3–5, optimal frequency parameters Vopt are presented, which are maximized
with respect to the fibre angle u for alternating angle-ply [(u/−u)3]s laminated shells. The
optimal design variables uopt and corresponding wavenumbers (m, n)opt are also given for
h/a=0·01 and 0·1. All these optimal values are calculated by using the four different
solutions for three aspect ratios (a/b=1, 1·5, 2) and two degrees of curvature
(a/Rx =0·2, 0·5) in each table. A single (m, n)opt represents Case (1): the optimal value is
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Figure 4. Variations of frequency parameters V of 12-layered shallow shells with spherical curvature versus
the fibre angle u (Rx /Ry =1, a/Rx =0·5, a/b=1, [(u/−u)3]s ; ——: h/a=0·1, – – –: h/a=0·01).

Figure 5. Variations of frequency parameters V of 12-layered shallow shells with hyperbolic paraboloidal
curvature versus the fibre angle u (Rx /Ry =−1, a/Rx =0·5, a/b=1, [(u/−u)3]s ; ——: h/a=0·1, – – –: h/a=0·01).

obtained at a stationary point of a frequency curve of this (m, n), while the two (m, n)opt’s
represent Case (2): the optimal point exists at a crossing point of two frequency curves
of these (m, n)’s.

In Table 3, given for the cylindrical curvature (Rx /Ry =0), it is clearly seen among the
four solutions that there are practically no discrepancies in the optimal values uopt and Vopt

for thin shells (h/a=0·01). For thick shells (h/a=0·1), the discrepancies among the four
values in Vopt are a little intensified and are increased with larger aspect ratio a/b, for
example about 5% for a rectangular planform (a/b=2). But again, no significant
discrepancies among them are observed on the optimal uopt . For optimal modes (m, n)opt ,
Case (1) with (1, 1) mode and Case (2) between the (1, 1) and (2, 1) modes are seen for
thin shells, while only the (1, 1) mode is obtained for thick shells.

For a square planform (a/b=1), the value of uopt is nearly equal to 45° for a thin shallow
shell (a/Rx =0·2, h/a=0·01), but the one-dimensional stiffening effect of the cylindrical
curvature becomes dominant and yields uoptV19° for a deeper shell (a/Rx =0·5). This
curvature effect is, however, diminished yielding again optimal solutions uoptV45° for
thick shells (h/a=0·1), because of the bending stiffness increasing with the cube of
thickness h.

In Table 4, sets of the optimal results by the four solutions are given for the spherical
curvature (Rx /Ry =1). Due to the diagonal symmetry of the square shell (a/b=1), all the
optimal fibre angles of the shells are exactly uopt =45°, but optimal modes (m, n)opt are
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T 3

Optimal frequency parameters of angle-ply shallow shells with cylindrical curvature
(Rx/Ry=0)

h/a=0·01 h/a=0·1
ZXXXXXCXXXXXV ZXXXXXCXXXXXV

a
b

a
Rx Solution uopt Vopt (m, n)opt uopt Vopt (m, n)opt

F–I 45·1 114·0 (1, 1) 45·3 56·24 (1, 1)
0·2 F–N 45·0 114·1 (1, 1) 45·0 56·76 (1, 1)

C–I 45·1 114·0 (1, 1) 45·3 57·31 (1, 1)
C–N 45·0 114·1 (1, 1) 45·0 57·39 (1, 1)

g
G

G

G

G

F

f

g
G

G

F

f

g
G

G

F

f

1·0

F–I 19·5 160·8 (1, 1)(2, 1) 46·3 60·14 (1, 1)
0·5 F–N 18·9 161·6 (1, 1)(2, 1) 45·0 61·14 (1, 1)

C–I 19·5 160·8 (1, 1)(2, 1) 46·3 61·18 (1, 1)
C–N 18·9 161·7 (1, 1)(2, 1) 45·0 61·72 (1, 1)

F–I 35·7 160·3 (1, 1) 63·7 91·56 (1, 1)
0·2 F–N 35·7 160·4 (1, 1) 63·8 92·70 (1, 1)

C–I 35·7 160·3 (1, 1) 63·6 94·35 (1, 1)
C–N 35·7 160·4 (1, 1) 63·6 94·35 (1, 1)

g
G

G

G

G

F

f

g
G

G

F

f

g
G

G

F

f

1·5

F–I 50·7 244·0 (1, 1) 59·5 93·35 (1, 1)
0·5 F–N 50·5 244·8 (1, 1) 59·4 94·54 (1, 1)

C–I 50·6 244·1 (1, 1) 59·5 96·13 (1, 1)
C–N 50·5 244·9 (1, 1) 59·4 96·17 (1, 1)

F–I 31·0 192·9 (1, 1) 90·0 152·3 (1, 1)
0·2 F–N 30·9 193·0 (1, 1) 90·0 155·1 (1, 1)

C–I 30·9 193·0 (1, 1) 90·0 160·0 (1, 1)
C–N 30·9 193·0 (1, 1) 90·0 160·0 (1, 1)

g
G

G

G

G

F

f

g
G

G

F

f

gG
G

F

f

2·0

F–I 43·9 334·2 (1, 1)(2, 1) 90·0 152·7 (1, 1)
0·5 F–N 43·8 335·0 (1, 1)(2, 1) 90·0 156·0 (1, 1)

C–I 43·9 334·4 (1, 1)(2, 1) 90·0 160·4 (1, 1)
C–N 43·8 335·1 (1, 1)(2, 1) 90·0 160·6 (1, 1)

found as Case (2) for the thin shell and Case (1) for the thick shell. It is generally seen
in the table that optimal modes (m, n)opt of the thin shells with deep curvature (h/a=0·01,
a/Rx =0·5) fall into Case (2) and (m, n)opt of the thick shells fall into Case (1), without
exception.

Table 5 presents the optimal results calculated by the four solutions for the hyperbolic
paraboloidal curvature (Rx /Ry =−1). The fundamental frequencies for shells of square
planform (a/b=1) with different thicknesses exhibit only slight differences, as observed
in Figure 5, and naturally the optimal solutions uopt and Vopt for h/a=0·01 and 0·1 are
quite close to each other in the table. But this tendency is seen only for the square planform
and is not observed for shells with other aspect ratios.
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It is seen, on the whole, in Tables 3–5 that the optimal solutions for thick shells
(h/a=0·1) are not so sensitive to the difference in the curvature ratios (Rx /Ry =0, 1 and
−1), and the values of uopt and Vopt are allocated within certain ranges, regardless of the
curvature ratio of Rx /Ry , showing the constant optimal mode (1, 1).

6. CONCLUSIONS

The free vibration of laminated shallow shells has been considered by using the
first-order shear deformation and the classical thin shell theories. Especially the optimal
design problem of the laminated shells was studied to obtain the optimal fibre orientation
angles resulting in the largest value of its fundamental frequency. By combining the two

T 4

Optimal frequency parameters of angle-ply shallow shells with spherical curvature
(Rx/Ry=1)

h/a=0·01 h/a=0·1
ZXXXXXCXXXXXV ZXXXXXCXXXXXV

a
b

a
Rx Solution uopt Vopt (m, n)opt uopt Vopt (m, n)opt

F–I 45·0 198·8 (1, 2)(2, 1) 45·0 58·77 (1, 1)
0·2 F–N 45·0 199·2 (1, 2)(2, 1) 45·0 59·30 (1, 1)

C–I 45·0 198·9 (1, 2)(2, 1) 45·0 59·84 (1, 1)
C–N 45·0 199·2 (1, 2)(2, 1) 45·0 59·90 (1, 1)

g
G

G

G

G

F

f

g
G

G

F

f

g
G

G

F

f

1·0

F–I 45·0 393·5 (1, 2)(2, 1) 45·0 73·62 (1, 1)
0·5 F–N 45·0 397·0 (1, 2)(2, 1) 45·0 74·70 (1, 1)

C–I 45·0 393·6 (1, 2)(2, 1) 45·0 74·66 (1, 1)
C–N 45·0 397·0 (1, 2)(2, 1) 45·0 75·18 (1, 1)

F–I 34·9 215·1 (1, 1) 63·2 91·78 (1, 1)
0·2 F–N 35·0 215·3 (1, 1) 63·0 93·06 (1, 1)

C–I 34·9 215·1 (1, 1) 63·1 94·56 (1, 1)
C–N 35·0 215·3 (1, 1) 62·8 94·71 (1, 1)

g
G

G

G

G

F

f

g
G

G

F

f

g
G

G

F

f

1·5

F–I 39·1 438·4 (1, 2)(2, 1) 46·0 95·35 (1, 1)
0·5 F–N 39·1 441·0 (1, 2)(2, 1) 47·3 97·82 (1, 1)

C–I 39·1 438·6 (1, 2)(2, 1) 49·6 97·93 (1, 1)
C–N 39·1 441·0 (1, 2)(2, 1) 48·7 99·29 (1, 1)

F–I 29·7 227·2 (1, 1) 90·0 152·3 (1, 1)
0·2 F–N 29·8 227·5 (1, 1) 90·0 155·1 (1, 1)

C–I 29·7 227·3 (1, 1) 90·0 160·0 (1, 1)
C–N 29·8 227·5 (1, 1) 90·0 160·1 (1, 1)

g
G

G

G

G

F

f

g
G

G

F

f

g
G

G

F

f

2·0

F–I 34·6 487·1 (1, 1)(2, 1) 90·0 152·8 (1, 1)
0·5 F–N 34·7 490·0 (1, 1)(2, 1) 90·0 156·1 (1, 1)

C–I 34·6 487·3 (1, 1)(2, 1) 90·0 160·5 (1, 1)
C–N 34·7 490·0 (1, 1)(2, 1) 90·0 161·0 (1, 1)
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T 5

Optimal frequency parameters of angle-ply shallow shells with hyperbolic paraboloidal
curvature (Rx/Ry=−1)

h/a=0·01 h/a=0·1
ZXXXXXCXXXXXV ZXXXXXCXXXXXV

a
b

a
Rx Solution uopt Vopt (m, n)opt uopt Vopt (m, n)opt

F–I 44·2 56·29 (1, 1) 45.0 55.19 (1, 1)
0·2 F–N 45·0 56·52 (1, 1) 45·0 55·89 (1, 1)

C–I 45·0 56·30 (1, 1) 45·0 56·25 (1, 1)
C–N 45·0 56·53 (1, 1) 45.0 56.53 (1, 1)

g
G

G

G

G

F

f

g
G

G

F

f

g
G

G

F

f

1.0

F–I 46·2 55·14 (1, 1) 45·0 53·88 (1, 1)
0·5 F–N 45.0 56·52 (1, 1) 45·0 55·89 (1, 1)

C–I 45.0 55·15 (1, 1) 45.0 54·89 (1, 1)
C–N 45.0 56·53 (1, 1) 45.0 56·53 (1, 1)

F–I 38.5 112·9 (1, 1) 64·1 91.21 (1, 1)
0·2 F–N 38·8 113·1 (1, 1) 64·3 92.47 (1, 1)

C–I 38·8 112·9 (1, 1) 63.9 93·99 (1, 1)
C–N 38·8 113·1 (1, 1) 64.0 94·13 (1, 1)

g
G

G

G

G

F

f

g
G

G

F

f

g
G

G

F

f

1.5

F–I 36·0 205·3 (1, 1)(2, 1) 62·6 91·05 (1, 1)
0·5 F–N 36·8 207·4 (1, 1)(2, 1) 63·1 93·00 (1, 1)

C–I 35·9 205·4 (1, 1)(2, 1) 62·4 93·79 (1, 1)
C–N 36·8 207·5 (1, 1)(2, 1) 62·9 94·66 (1, 1)

F–I 33·8 162·1 (1, 1) 90.0 152·0 (1, 1)
0·2 F–N 33·8 162·2 (1, 1) 90·0 155·0 (1, 1)

C–I 33·8 162·1 (1, 1) 90·0 159·7 (1, 1)
C–N 33·8 162·2 (1, 1) 90.0 160·0 (1, 1)

g
G

G

G

G

F

f

g
G

G

F

f

g
G

G

F

f

2.0

F–I 45·3 224·5 (1, 1)(2, 1) 90·0 151·4 (1, 1)
0·5 F–N 45·0 226·0 (1, 1)(2, 1) 90·0 155·4 (1, 1)

C–I 45·0 224·7 (1, 1)(2, 1) 90·0 159·0 (1, 1)
C–N 45·0 226·1 (1, 1)(2, 1) 90·0 160·3 (1, 1)

shell theories with/without inplane and rotational inertia effects, four different types of
analytical solutions were derived and used to determine optimal fibre orientation angles,
frequency parameters and corresponding mode numbers.

In numerical demonstrations, comprehensive sets of frequency parameters were
tabulated for the cross-ply laminated shells and were plotted with fibre angles of the
angle-ply shells. Optimal solutions were also presented in tables for wide ranges of aspect
ratios and degrees of curvature with three typical geometric configurations of cylindrical,
spherical and hyperbolic paraboloidal curvatures.

It was observed from the optimal solutions that geometric curvature effects are dominant
for thin shells, but become diminished as the shells get thicker. As for effects in using four
different solutions, it was concluded from a practical viewpoint that the simplest explicit
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solution from the classical shell theory without inplane inertial suffices for the purpose of
determining optimal fibre orientation angles with respect to the maximum fundamental
frequency. The other more elegant solutions may be required when higher frequencies and
other complicating effects are under consideration.
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